forgetting factor
- 网络遗忘因子
-
Method of dynamically selecting forgetting factor in reputation model
声望模型中一种动态选择遗忘因子的方法
-
This paper adopts adaptive Kalman filter with forgetting factor .
本文研究了基于遗忘因子的自适应滤波算法。
-
A new strategy based on forgetting factor method is proposed for packet dropout compensation .
针对控制信号丢包,提出了一种新的丢包补偿策略,即基于遗忘因子法的丢包补偿策略。
-
Convergence Rate of Least Squares Algorithm with Forgetting Factor
变遗忘因子最小二乘算法的收敛速度
-
A New Method of Identification of Multivariable Systems : Stochastic Approximation Algorithm with Forgetting Factor
一种多变量系统辨识的新方法:带遗忘因子随机逼近法
-
The self tuning of the forgetting factor and its application to the fault diagnosis
遗忘因子模糊自调整算法及在故障诊断中的应用
-
On H ∞ Filtering with Forgetting Factor for Airborne SAR Motion Compensation System
带遗忘因子的H∞滤波在机载SAR运补系统中的应用
-
An identification method with auto-regulation forgetting factor in time-varying and color noise system
自调整遗忘因子的有色噪声时变系统辨识
-
Dynamical recurrent least square algorithm with forgetting factor is presented to train network parameters .
针对对角回归结构,推导出带遗忘因子的动态递推最小二乘法对网络的参数进行训练。
-
An identification algorithm with auto-regulation forgetting factor for fast time varing system
一种自动调整遗忘因子的快速时变参数辨识方法
-
Identification algorithm with adaptive vector forgetting factor
自适应向量遗忘因子辨识算法
-
The model parameters are identified by using the recursive least squares with forgetting factor method .
控制结构采用广义预测控制器的结构,参数辨识采用带遗忘因子的递推最小二乘法,控制律采用广义预测控制。
-
Forgetting Factor Algorithm for Aircraft Flutter Modal Parameter Identification
基于遗忘因子算法的飞行器颤振模态参数辨识
-
Especially forgetting factor ECAB has excellent performance under large cyclic frequency error .
特别是遗忘因子ECAB算法,在循环频率误差较大的情况下,仍能保持很好的性能。
-
In this paper , an adaptive forgetting factor algorithm is obtained based on on-line equalization error measurements .
该文在获取均衡误差最小的即时过程中推导出一种应用在DFE中的自适应遗忘因子RLS算法。
-
Kalman gain is improved through variable forgetting factor which will avoid the accumulation of errors .
卡尔曼增益通过变遗忘因子进行改进,避免误差的累积。
-
Application of the Extented Forgetting Factor Recursive Least Squares Estimator to GPS
推广的遗忘因子递推最小二乘算法在GPS中的应用
-
The open-closed loop iterative learning method with forgetting factor and its convergence condition are given .
采取带有遗忘因子的开闭环迭代方法,给出其收敛条件。
-
A Variable Forgetting Factor RLS Algorithm for Cyclostationary Signals
一种针对循环平稳信号的变遗忘因子RLS算法
-
A new wideband DOA tracking method is proposed . The new method has good tracking ability when the appropriate forgetting factor is selected .
提出了一种宽带信源DOA跟踪的新方法,通过选择合适的遗忘因子,该算法对DOA快速变化的宽带信源有很好的跟踪能力。
-
Firstly , to limit the particle degeneracy , a new method of Kalman particle filter is proposed by introducing forgetting factor .
通过引入遗忘因子概念,提出了基于遗忘因子的卡尔曼粒子滤波方法,在一定程度上缓解了传统方法在参数估计过程中的粒子衰竭问题。
-
Forgetting factor stochastic gradient algorithm ( FG algorithm for short ) is presented and its convergence is studied by using stochastic process theory .
提出了时变随机系统的遗忘梯度辨识算法,并运用随机过程理论研究了算法的收敛性。
-
The way of choosing the forgetting factor is stated so that the minimum upper bound of the parameter estimation error is obtained .
阐述了最佳遗忘因子的选择方法,以获得最小参数估计上界。
-
An improved algorithm was presented , called forgetting factor CAB ( F CAB ), in which cyclic frequency need not be estimated .
提出一种改进的CAB算法&遗忘因子CAB算法(F-CAB),该算法无需对循环频率进行估计。
-
The result show that if forgetting factor is equal to 1 , RLS adaptive filter can realize any part of the adaptive inverse control .
研究结果表明,在遗忘因子为1时,RLS自适应滤波器能够很好地实现自适应逆控制中的各个环节。
-
The algorithm introduced the forgetting factor to get the support vectors at the first training . The number of support vectors is decreased by 28 % .
该算法在第一次小样本训练时引入了遗忘因子,该因子使支持向量数减少了28%。
-
Due to the real-time feature of dynamic dispatching , the prediction accuracy of transit vehicle running time prediction model can be improved with a forgetting factor .
本文针对动态调度对车辆运行信息的实时性要求高的特点,提出公交车辆运行时间预测模型,并通过衰减因子来提高模型的预测精度。
-
System parameters were identified by adapting recursion least square method , and the forgetting factor was introduced to improve the model tracing ability of TCS .
利用递推最小二乘法进行了系统系数辨识,并引入遗忘因子以提高TCS的模型跟踪性能。
-
The algorithm of SOM neural network is improved for better system 's performance . A forgetting factor is used in algorithm in order to accelerate its convergence speed .
为了改善系统的性能,对自组织神经网络的算法进行了改进,利用遗忘因子以加速算法的收敛速度。
-
A lot of real observation data are used for simulation tests and results show that when forgetting factor is decreased , the one-step forecasting performance can be improved .
针对大量实测数据进行仿真实验,结果表明:减小遗忘因子可以提高一步预测的性能。